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Abstract

Although SLAM has traditionally relied on representing the environment as low-level geomet-
ric features such as points, lines, and planes, recent advances in object recognition capabilities
as well as demand for higher-level environment representations to facilitate higher-level au-
tonomy have motivated object based environment representations, or Semantic SLAM. We
present a Semantic SLAM algorithm that directly incorporates a sparse and deformable
representation of objects into a factor graph SLAM system, resulting in a system that is
efficient, robust to varying object shapes and environments, and easy to incorporate into an
existing SLAM system. This keypoint-based representation facilitates robust detection in
varying conditions and intraclass shape variation as well as computational efficiency. The
performance of our algorithm is demonstrated in two different SLAM systems and in varying
environments.

1 Introduction

This paper addresses the task of semantic simultaneous localization and mapping (SLAM), i.e. estimating the
six degree of freedom pose of objects in an unknown environment while localizing the mobile robot within the
map. While SLAM is an extensively studied problem, until recently most methods focused solely on creating
a map of low-level geometric features in the environment such as corners [Hesch et al., 2014], lines [Kottas
and Roumeliotis, 2013], and surface patches [Henry et al., 2012]. In contrast, high-level autonomy in unknown
environments requires more meaningful maps of objects with semantic content, such as windows, tables, and
chairs.

Traditional approaches to SLAM were based on Kalman filter methods in which only the most recent robot
pose is estimated [Durrant-Whyte and Bailey, 2006]. This approach is computationally efficient, however the
inability to modify previous pose estimates and relinearize previous measurement functions frequently causes
errors to compound [Hesch et al., 2014]. More recently, great success has been seen with batch or pose-graph
methods that optimize over the robot’s entire trajectory rather than simply the most recent pose [Kaess et al.,
2012,Mur-Artal and Tardós, 2016]. Our approach follows this formulation, viewing the estimation problem
as a set of nodes in a graph (a “pose graph”) where each node corresponds to an estimation variable (e.g.
a robot or object pose). Two robot-pose nodes in the graph are linked by an edge if there is an odometry
measurement available between them (e.g. LIDAR scan match that was performed between two subsequent

∗seanbow@seas.upenn.edu



measurements), while a robot-pose node and an object-pose node share an edge if the object was observed
from the corresponding robot pose.

Rapidly advancing methods of object recognition within images [Ren et al., 2015, Redmon and Farhadi,
2017] have led to many works exploring the inclusion of semantic information within these pose graph
SLAM methods. Focusing on the localization problem only, [Atanasov et al., 2014] incorporated semantic
observations in the metric optimization via a set-based Bayes filter. Many other approaches [Civera et al.,
2011,Pronobis, 2011,Stückler et al., 2013,Vineet et al., 2015,Pillai and Leonard, 2015] extract both metric
and semantic information but typically the two processes are carried out separately and the results are merged
afterwards. [Lianos et al., 2018] uses semantic information to improve frame-to-frame feature matching in
visual odometry systems. In [Bowman et al., 2017], the authors integrated semantic information directly into
the SLAM estimation problem as we do here, however the only object variable included in the estimation was
its position rather than full six degree-of-freedom pose.

Our approach directly integrates the 3D shape of semantic objects into a SLAM system by representing
it as a sparse set of semantically meaningful keypoints [Pavlakos et al., 2017]. These keypoints can be
reliably detected on different instances of an object class and from varying viewpoints and viewing conditions,
and localizing them and including them in the map is no more computationally intensive than traditional
geometric SLAM. A learned deformable object structure relates these keypoints to the full object pose, and
is used to both obtain the object pose as well as better localize the keypoints themselves by constraining
them to known object shapes. This approach results in a system that is efficient in both representation and
computation, and can be easily integrated into existing pose graph-based SLAM systems. We demonstrate its
effectiveness by applying it to two different SLAM algorithms and demonstrating its performance in varying
environments.

2 Problem Formulation

In the classical simultaneous localization and mapping problem, a mobile sensor moves through an unknown
environment, modeled as a collection L , {`m}Mm=1 of M static landmarks. Given a set of sensor measurements
Z , {zk}Kk=1, the task is to estimate the landmark positions L and a sequence of poses X , {xt}Tt=1

representing the sensor trajectory. A mathematical statement of the SLAM problem then solves the following
MAP estimation problem:

X̂ , L̂ = arg max
X ,L

log p(X ,L|Z). (1)

Most modern SLAM algorithms solve this by formulating it as a pose graph optimization. A pose graph is a
convenient way of representing an optimization problem for which there exists a clear physical structure or a
sparse constraint set. Graphically, a factor is a generalization of an edge that allows connectivity between
more than two vertices. A factor f in the graph is associated with a cost function that depends on a subset
of the variables V such that the entire optimization is of the form

V̂ = arg min
V

∑
f∈F

f(V). (2)

For example, consider a simple case of a mobile ground robot equipped with wheel encoders. Along its
trajectory, between each pair of poses xi and xi+1, the integrated wheel encoders report a pose difference
zi = xi+1 − xi + wi, where wi ∼ N (0,Ri) is some Gaussian noise. It is then easy to see that the solution for
the estimation in (1) (assuming a uniform prior on p(X ,L)) is given by

x̂1:T = arg max
x

log p(z1:T−1|x1:T ). (3)



Assuming conditional independence of measurements given the trajectory and using the known distribution
of z, this can be written as

x̂1:T = arg min
x

T−1∑
i=1

‖zi − (xi+1 − xi)‖2Ri
(4)

which we see is a factor formulation as in (2) with f(xi,xi+1) = ‖zi − (xi+1 − xi)‖2Ri
.

More generally, suppose a robot receives several different classes of measurements Z1, . . . ,ZN , e.g. odometry,
GPS, visual, etc. Assuming measurements are conditionally independent given the trajectory and map, and a
uniform prior on Z1, we can write (1) as

X̂ , L̂ = arg max
X ,L

log p(Z|X ,L)p(X ,L) (5)

= arg max
X ,L

[
N∑
i=1

log p(Zi|X ,L) + log p(X ,L)

]
(6)

= arg min
X ,L

[
N∑
i=1

− log p(Zi|X ,L)− log p(X ,L)

]
, (7)

and so we see that negative measurement log-likelihoods correspond exactly to the factors in (2). Additionally,
we see the inherent modularity in the factor graph formulation; new information or measurement types results
in only another additive term to the optimization. In the following section, we describe the specific form
of our semantic representation and measurement that allow it to be included in systems of the form in (2)
or (7).

3 Semantic Factors

Here, we focus on a particular formulation of the SLAM problem that incorporates semantic objects. An
individual object is represented as its overall pose oj ∈ SO(3) along with a set of semantic keypoints `i ∈ R3.
These semantic keypoints consist of semantically meaningful points on the object that can be reliably found
across different instances of the object class and meaningfully located in space. For example, the object class
car may have among its semantic keypoints those of “front left wheel” and “rear right headlight.” Using
the methods of [Pavlakos et al., 2017], an object’s semantic keypoints are able to be reliably detected and
identified across various viewpoints. For example, in Figure 1 various semantic keypoint detections for the
object classes bicycle, bus, car, and chair are shown.

An object class is represented as a deformable shape model consisting of the mean shape position of each
of its p semantic keypoints relative to its own pose o, along with directions of possible shape variability to
account for intraclass variation of keypoint locations. More specifically, let S ∈ R3×p be a matrix consisting
of an object’s p keypoints represented in the object’s own frame stacked horizontally. We then have

S(c) = B0 +

k∑
i=1

ciBi, (8)

where B0 is the object class’s mean shape and B1, . . . ,Bk are modes of possible shape variability, computed
offline by Principal Component Analysis [Pavlakos et al., 2017], written as a function of the deformation
coefficients c ∈ Rk.

Intuitively, repeated observations of a keypoint `j are used to triangulate it in space; the deformable shape
model of the known object class is then used to indirectly estimate both the deformation coefficients c and

1Most methods additionally assume a uniform prior on p(X ,L) and perform a maximum likelihood estimation, however later
in section 3.1 we will use this term to capture semantic object structure



Figure 1: Detected semantic keypoints for the object classes bicycle, bus, car, and chair

the overall object pose o. See Figure 2 for an example of a car being observed from two camera poses. The
semantic keypoints, denoted by colored circles and their associated image patches, are constrained in space
by the corresponding image observations, denoted by red lines drawn to the camera positions. The object
pose, represented by the axis in the middle of the car, is then constrained by the deformable object structure,
denoted by the purple lines drawn to the keypoints.

3.1 Semantic Measurement Model

Formally, an object in the map consists of four elements: its class oC (assumed to be known from the object
detector, see [Bowman et al., 2017] for a probabilistic treatment), its pose o ∈ SO(3), the positions of its
keypoints `i ∈ R3, i = 1, . . . , p, and its deformation coefficients c ∈ Rk.

When a camera x observes this object o, the measurement h(x, o) consists of projections of each of the
object’s semantic keypoints onto the image plane:

h(x, o) =
[
hπ(x, `1)T · · · hπ(x, `p)

T
]T
, (9)

where hπ(x, `) is the standard perspective projection of a point at ` onto a camera at pose x.

The probability of a semantic measurement z = [zT1 · · · zTp ]T is given as

p(x, o, `, c|z) = p(o, c|x, `, z)p(x, `|z). (10)

Note that as the actual measurement z observes only the semantic keypoints `, we have p(o, c|x, `, z) = p(o, c|`),
and thus

p(x, o, `, c|z) = p(o, c|`)p(x, `|z) (11)

=
p(`|o, c)p(o, c)

p(`)

p(z|x, `)p(x, `)
p(z)

(12)

∝ p(z|x, `)p(`|o, c)p(o, c), (13)



Figure 2: Example factor structure for a car object observed from two camera poses

where we assume uniform priors p(`), p(x, `), and p(z).

Let us first examine the first term in (13), p(z|x, `), and begin to compute log-probabilities as required in (7).
As the measurements z are simply perspective projections of the keypoints onto an image plane with some
additive (Gaussian) measurement noise, we have

log p(z|x, `) ∝ log

p∏
i=1

p(zi|x, `i) (14)

∝ −
p∑
i=1

‖zi − hπ(x, `i)‖2R, (15)

where R ∈ R2×2 is the image measurement covariance matrix.

Next, let us examine the second term p(`|o, c). This probability relates to the deformable object structure,
and describes how likely a given object configuration is given the learned object basis structure. Let Gq̄O
and GpO be the rotation and position, respectively, of the object with respect to the global frame. Following
equation (8), we have

`i = R(Gq̄O)

bi0 +

k∑
j=1

cjb
i
j

+ Gpi, i = 1, . . . , p (16)

= R(Gq̄O)si(c) + Gpi, i = 1, . . . , p, (17)

where bij is the ith column of Bj , and si(c) is the ith structure-determined keypoint position in the local
frame with deformation coefficients c.

Because the deformable shape model may not perfectly capture all intraclass variation, and because keypoint
positions will not be estimated perfectly due to image noise and state uncertainty, we allow for estimated
keypoints ` to vary from their structure s(c) by introducing a gaussian noise term wst ∼ N (0,Rstruct), writing
a probabilistic expression for `i as

`i = R(Gq̄O)si(c) + Gpi + wst, i = 1, . . . , p. (18)



We can now write the desired log-probability as

log p(`|o, c) = log

p∏
i=1

p(`i|o, c) (19)

∝ −
p∑
i=1

‖`i −R(Gq̄O)si(c)− Gpi‖2Rstruct
. (20)

Finally, let us examine the term p(o, c). We assume that the deformation coefficients are independent of the
object pose and that the pose prior p(o) is uniform, so we have p(o, c) ∝ p(c). As in [Pavlakos et al., 2017],
we use the term p(c) as a simple regularizer on the coefficients c:

log p(c) ∝ −λ‖c‖22, (21)

where λ is a chosen regularization parameter.

Combining equations (13), (15), (20), and (21), we can now write the expression for the full semantic
measurement log-probability,

− log p(x, o, `, c|z) ∝
p∑
i=1

‖zi − hπ(x, `i)‖2R +

p∑
i=1

‖`i −R(Gq̄O)si(c)− Gpi‖2Rstruct
+ λ‖c‖22. (22)

In practice, a single object is necessarily observed from multiple different camera poses. While each observation
alters the measurement probability (equation (15)) associated with the object, the structure probabilities
(equations (20) and (21)) remain the same. Suppose an object is observed by a set of measurements {zi}Ki=1.
We can write the full log-probability associated with this object as

− log p(x, o, `, c|z1:K) ∝
K∑
k=1

p∑
i=1

‖[zk]i − hπ(x, `i)‖2R +

p∑
i=1

‖`i −R(Gq̄O)si(c)− Gpi‖2Rstruct
+ λ‖c‖22, (23)

where [zk]i is the ith keypoint measurement in measurement zk.

4 System Architecture and Experiments

To thoroughly demonstrate the effectiveness of our semantic SLAM method, we performed experiments on
two separate platforms. In both systems, we created a semantic front-end that selects every 10th camera
frame as a semantic keyframe. First, our front-end applies to each key image the Faster R-CNN object
detector [Ren et al., 2015] to detect object bounding boxes. To each detected bounding box, we applied the
semantic keypoint detector from [Pavlakos et al., 2017] to detect each object’s semantic keypoints. Next, the
Mahalanobis distance between each measurement and each object in the map of the same class is computed,
and a simple maximum likelihood data association is performed with the Hungarian algorithm [Munkres, 1957].
The resulting keypoint measurements and their data associations were then used in custom GTSAM [Dellaert,
2012] factors that implement equation (23) for inclusion in the larger factor graph SLAM architecture.

4.1 OmniMapper System

The first SLAM architecture is based on the OmniMapper [Trevor et al., 2014] system. The OmniMapper is
a factor-graph based SLAM that builds an odometry spine by ICP matching LiDAR scans, including loop
closure constraints on recognizing previously visited locations. In addition to relative pose measurements
between subsequent poses based on scan matching, the OmniMapper classifies LiDAR scans as ground or



Figure 3: Clearpath Husky robot used in first series of experiments

Figure 4: Example image collected from Husky robot along with semantic keypoint detections

obstacle hits based on their vertical position and uses this classification to update a log-odds occupancy grid
that can be used for navigation and obstacle avoidance.

The robot platform used in this experiment is the Clearpath Husky, shown in Figure 3. LiDAR and camera
data was collected from trajectories in an urban environment and processed offline. See Figure 4 for an
example image collected along the trajectory along with semantic keypoints detected on a window, and see
Figure 5 for the system’s estimate of the robot trajectory and map at the time the picture in Figure 4 was
taken. Note the one detected and localized window shown in the estimate, along with the four semantic
keypoints that correspond to the window corners.

Continuing the trajectory Figure 6 shows a later point in the experiment after a longer path through the
urban environment, showing the estimated trajectory, occupancy grid, and several estimated window objects.

Our method is also able to perform well at single-object localization up close, with applications of manipulation
or other interaction where precise pose estimates are necessary. A robot was driven on a straight line trajectory
towards a black crate placed on the ground and images were continuously taken of the crate. See Figure 7 for
an example of an image as the robot nears the crate, and Figure 8 for the estimated trajectory and crate
pose along with the position of the crate’s semantic keypoints. Note how the keypoints line up directly over
the occupancy grid-shown obstacle that the crate represents, as well as the subjective quality of the keypoint



Figure 5: Estimate of the robot trajectory, map, and detected window object at the time at which the image in
Figure 4 was taken

localization relative to their displayed positions on the crate in Figure 7.

4.2 Visual Odometry-based SLAM on KITTI

The second SLAM system is based on the algorithm presented in [Bowman et al., 2017]. We implement a
GTSAM [Dellaert, 2012]-based algorithm based on stereo visual odometry from the VISO [Geiger et al., 2011]
visual odometry algorithm. In addition to relative pose factors from visual odometry, we include geometric
visual feature factors as described in [Bowman et al., 2017], and custom semantic object factors as described
above that implement equation (23). We applied our algorithm to trajectory 05 in the KITTI [Geiger et al.,
2012] outdoor dataset. The KITTI dataset consists of a vehicle equipped with several sensors driving through
an urban environment, and parked cars were used as the estimated semantic objects.

See Figure 9 for an example image taken from early in the KITTI dataset trajectory 05, showing a challenging
example of a line of parked cars with numerous occlusions and that is traversed at relatively high speed.
Our algorithm’s estimate of the trajectory along with the estimated cars is shown in Figure 10. Although
some detections were missed, the detections and estimated poses and keypoints are very accurate given the
conditions.

In Figure 11, our algorithm’s trajectory and map estimate after a longer trajectory is shown. Even in long
trajectories with numerous objects in the map and several loop closure situations, our algorithm is able to
localize not only the camera’s position along the trajectory, but also the position and orientation of parked
cars along the path.



Figure 6: Estimate of the trajectory after a longer path through the same environment as seen in Figures 4 and 5.

5 Conclusion

We have presented a method that is able to reliably and efficiently integrate semantic objects into a SLAM
system, not only improving the performance of robot localization, but also providing an accurate semantic
map usable for higher level autonomy. The representation of objects as a sparse and deformable skeleton of
keypoints allows for efficient solution of the SLAM problem, allowing for real-time solutions even after lengthy
trajectories. Our experiments demonstrated our method’s ability to integrate into different factor graph-based
SLAM systems and its performance in varying environments, providing robust semantic information across
varying platforms.
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