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@‘ Designing with conventional vs. self-healing materials

With

conventional
materials

. v’ Less constraints on design

With v' Tolerance for flaws, long service life
self-heqling v" Adaptability to environment
o Difficult, too costly to fabricate at scale
O Most are polymer-based materials

materials




@‘ Healing in synthetic materials 3
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matter stored locally
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Blaiszik, B. J. et al. Annu. Rev. Mater. Res. 40,

179-211 (2010).
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Low diffusivity at room

temperature
104 to 10735 m2/s

Solute precipitation
(Up to 1200 °C)

van Dijk, N. H. & van der Zwaag, S. Adv.
Mater. Interfaces 1800226, 1-13 (2018).

Crack-localized joule heating
(Up to 600 °C at crack sites)

crack

Song, H. et al. Sci. Rep. 7, 1-11 (2017).

Low melting point alloys

(60 to 70 °C)

Van Meerbeek, |. M. et al. Adv. Mater. 28,
2801-2806 (2016).




Taylor, D. et al, Nat. Mater. 6, 263268 (2007).
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@‘ Transport-mediated healing in bone

Concentric lamellae

Nutrients and cells
.\ transported to fracture

Blood vessel

Lymphatic vessel

Lacuna
Canaliculi, < /7

Periosteal vein

Periosteal artery

Periosteum:
Outer fibrous layer

Inner osteogenic layer
Porous structure

Central canal
Spongy bone
Perforating canal
Lymphatic Compact bone
vessel
Compact bone

* Pores in cellular structure house cells and blood vessels.

* Blood vessel network transports nutrients, minerals and cells Periosteum

to the damage site.

* Bone heals effectively near room temperature (37 °C). Medulary caviy



&| Atransported-mediated approach to heal metals

M Nutrients and cells
\ .\ transported to fracture

y (| -p

Biomimicry

Insulating
Coating

Exposed
nickel

New nickel

Polymer-coated
cellular nickel

Ni2+ transport through
electrolyte in pores

e transport
through nickel

* Electrodeposition at -1.8 V vs. nickel
counter electrode.

* Polymer coating has lower failure strain
than metal.

* Polymer coating allows control over the
location and onset of healing.



@‘ Healing cellular nickel with 3 types of damage
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Healing after scission failure (F2)
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&| Healing after tensile failure (F1)

Healed with 250 J Healed with 2,500 J
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@‘ Healing after plastic deformation (P)
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‘ Healing electrical conductivity

* Pristine sample: 0.159 £ 0.001 Q
* Fully ruptured sample: Very high resistance

* Healed sample (1500 J): 0.163 £ 0.032 Q

Electrical resistance can be recovered to
within 2.5% of its original value.
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@‘ Our approach enables low-energy metal healing
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@‘ Summary ’

* Electrochemistry enables transport-mediated healing in cellular metals.

* We enable rapid, effective, low-energy, room-temperature healing of cellular metals.

Polymer-coated
cellular nickel

Ni2+ transport through * 100% recovery of strength after scission failure and
electrolyte in pores ’rensile fCIiIUI’e

* Up to 1.5x strengthening of plastically-deformed
cellular nickel.

* Low-energy healing: a cleaved sample can be
healed up to 162 times with a smartphone battery.

* Full recovery of electrical conductivity after fracture.

e” transport
through nickel

* Further developments (e.g. autonomous healing) can revolutionize how we design
metal parts in aerospace vehicles and robots.
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Potential Applications
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