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Challenge: how do you integrate a nanoscopic structure
with a macroscopic handle?
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CNP’s Mechanical Characteristics

When pushed against hard surface, the
CNP’s tip buckles without breaking (left) yet
the CNP is stiff enough to penetrate into a
biological cell (right)

NANOTECHNOLOGY

Iﬁ_;

S
A

Schrlau, M. G.; Falls, E. M.; Ziober, B. L.; Bau, H. H., Nanotechnology, 2008



CNP: Optical Properties

(a) A schematic of a carbon pipette partially
filled with a suspension of 50nm fluorescent
particles in water-glycerin blend.

:'
Carbon

(b) A fluorescent image of a portion of the tip

filled with a suspension.

Aqueous solution of glycerin : ) ) )
containing fluorescence particles (c) An optical image complementing the

fluorescent image of b.

(d) An optical image of the suspension-air
interface inside the carbon pipette.

(e) A florescent image complementing the
optical image of Fig. d. The liquid part of the
suspension is a water-glycerin mixture.

Kim B. M, Murray, T., and Bau, H. H., 2005, The
Fabrication of Integrated Carbon Pipes with Sub Micron
Diameters, Nanotechnology, 16, 1317-1320.




Sample Holders for Electron Microscope Imaging

Si wafer

Carbon Nanopipe Diameter:
~500nm

Particles ~40nm, Fluorescent
Polystyrene

Kim, B. M., Qian, S., and Bau, H., H., 2005,
Filling Carbon Nanotubes with Particles, Nano
Ssm—— - ' Letters, 5 (5) 873 — 878



CNPs’ Electrical Properties
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Flow Characteristics of the Carbon Nanopipes
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The position of the fluorescent particle inside the nanotube as liquid flows from the smaller
drop to the bigger drop. The arrow indicates the location of the particle.




MEASURING FLOW RATES at ATTOLITER PER SECOND
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Probing Cells

a Petri Dish

Cell CNP

with Buffer

Probing Cells Under an Inverted Microscope. ()
Schematic depicting a CNP probing a plated
adherent cell in a Petri dish. (b) Phase contrast
optical image showing a CNP probing an adherent
OSCC (10 um).

20um




Cell Viability upon Probing with CNPs

40 um.

The cells along the edge were probed for short times with CNPs (A, dotted
line). When Trypan Blue was added to the extracellular solution, the probed

cells remained colorless (viable) while dying or dead cells turned blue (B,
dotted circles).



CNPs’ Cell Toxicity
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(a) OSCC prior to injection. (b) Same
OSCC subsequent to dye injection
(observation with fluorescence
microscopy)
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(a) Right to left: proliferation of
speared OSCC observed over two
weeks. (b) Average normalized
number of speared (circle) and un-
speared (square) OSCC as a function
of time.

Schrlau, M. G.; Falls, E. M.; Ziober, B. L.; Bau, H.
H., Nanotechnology, 2008



Injection of Fluorescent Dye into Cells
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Calcium Signaling: Secondary Messenger Injection

Intracellular Ca*2 regulates

processes by activating or inhibiting

signaling pathways

Short
Term

Long
Term
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Secondary messengers transduce
membrane signals to release
calcium from intracellular calcium
stores

signal molecule
®. G-protein-linked
receptor activated J
! pr'-r.'u.éphul'r[.:-arﬂ.: C-p

.

Pl 4.5-bisphi hate
[Pl4,BIP2]

activated Gq
o sy bt

Figurz 15-36. Molacular Biclogy of the Call, 4th Edition.

Unregulated calcium release implicated
in cancer
[Monteith et al, Nat Rev Cancer, 2007]



Second Messenger Injection using CNPs

* IP; — Inositol trisphosphate

| « cADPr — Cyclic adenosine diphosphate ribose

 NAADP — Nicotinic acid adenine dinucleotide
phosphate

ER

* Endoplasmic Reticulum (ER) — sensitive to IP3 and
cADPr (in some cells)
* Lysosomes (Ly) — sensitive to NAADP (controversial)

Fluorescent Images

<— Breast cancer cells (340nm/380nm)
(SKBR3) loaded 0

with Fura-2AM Basal —

Ex Em Ex: 340, 380 nm Release —

Em: 540 nm

" 20 pm

Confocal by Brailoiu GC, Temple




Calcium Signaling via Second Messenger Injection
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IP,-Induced Ca*? Release in Breast Cancer Cells

=100 nM IF, (CNP)

=100 nM IP, {Femtotip®)
100 n IF'3 + XeC

| ntracellular Solution
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Traces = average 6 cells +/- s.e.m

Schrlau M, Brailoiu, E., Patel, S., Gogotsi, Y., Dun, N., and Bau, H. H., 2008, Carbon Nanopipettes Characterize
Calcium Release Pathways in Breast Cancer Cells, Nanotechnology 19, 325102




cADPr-Induced Ca*? Release in Breast Cancer Cells

= 100 nM cADPr (CNP)

s 100 NM cADPr (Femtotip®)
100 nM cADPr + BAF

e 100 N cADPr + Ry

= |ntracellular Solution

e Calcium released by cADPr when acidic
calcium stores are depleted.

* No calcium released when Ry receptor is
blocked.

e Conclusion 2 ER is sensitive to cADPr
through Ry receptor.

2 3 4
Time (min)

Traces = average 6 cells +/- s.e.m

Schrlau M, Brailoiu, E., Patel, S., Gogotsi, Y., Dun, N., and Bau, H. H., 2008, Carbon Nanopipettes Characterize
Calcium Release Pathways in Breast Cancer Cells, Nanotechnology 19, 325102




NAADP-Induced Ca*? Release in Breast Cancer Cells

e 100 Nl NAADP (CNP)

—— 100 nM NAADP (Femtotip® II)
100 n NAADP + BAF

=100 N NAADP + Ry
Intracallular Salution

* No calcium released when acidic calcium
stores are depleted.

o Partial release when Ry receptor is blocked.

e Conclusion - Ly is sensitive to NAADP.
Calcium-induced calcium release from ER
through Ry receptor.

Time (min)

Traces = average 6 cells +/- s.e.m

Schrlau M, Brailoiu, E., Patel, S., Gogotsi, Y., Dun, N., and Bau, H. H., 2008, Carbon Nanopipettes Characterize
Calcium Release Pathways in Breast Cancer Cells, Nanotechnology 19, 325102




Carbon Nanopipettes for Cell Electrophysiology
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Cell Membrane Potential
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'__,.,_—___—_T_—_a_—_v____-m—-—_r:-_h\____________________________________________________________

Voltage (m'

Extracellular

N Quartz
Carbon

) . 4rd]
< 0 73, ) O ‘n;
Intracellular A o5 2 T
x ? - %
. ,.Jr
Membrane Forming Complete

Probing events are electrically recorded with CNPs

Schrlau, M., Dun, N., and Bau, H. H., 2009, Cell Electrophysiology with Carbon Nanopipettes, ACS
Nano 3 (3), 563-568




Measuring Cell Response to Chemical Stimuli
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Experimental Results compared with Nernst Predictions

e Sample 1 from Figure 3A
4  Sample 2 from Figure 3B
Sample 3 from Figure 3C
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Measuring Response to Pharmacological Stimuli

HBSS then C-ABA
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Carbon Nanopipettes (CNPs) for automated
microinjection & the study subcellular tRNA
dynamics




Motivation

Microinjection provides about the only means to
controllably introduce reagents with known
compositions at a known time into cells to enable
dynamic studies of cell functions

Conventional microinjection is a low throughput,
tedious process that requires a great amount of skill

Our objectives are to improve injection tools,
automate the injection process, and use our system
to carry out various studies in cell biology such as
alternations in tRNA intracellular distribution,
resulting from stressors



Detection of Cell Penetration
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Anderson, S., and Bau, H. H., 2014, Electrical Detection of Cellular Penetration during Microinjection with
Carbon Nanopipettes, Nanotechnology 25, 245102

Anderson, S., and Bau, H. H., 2015, Carbon Nanoelectrodes for Single-Cell Probing, Nanotechnology 26,
185101
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Upenn semi-automated injection system
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Computation of Microinjector’s Trajectory
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Semi-automated Injection with Electrical
Feedback
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tRNA — more than protein synthesis

Stressor-Induced tRNA translocation
Amino Acid Deprivation

oy

Cy3-labeled bulk tRNA Rhodamine -labeled bulk tRNA



tRNA Trafficking Dynamics — Amino Acid Deprivation
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Other Applications of CNPs

e Monitoring neurotransmitters
concentrations in the Drosophila

Brain.

H. R. Rees, S. E. Anderson, E. Privman, H. H. Bau, & B. J.
Venton, 2015, Carbon nanopipette electrodes for dopamine
detection in Drosophila. Analytical Chemistry 87 (7), 3849-3855

e Monitoring function of ion channel Reference
blockers through cell
electrophysiology v ) ™ Carbon
Schrlau, M., Dun, N., and Bau, H. H., 2009, Cell Electrophysiology % ™ Quartz

with Carbon Nanopipettes, ACS Nano 3 (3), 563-568 Y795~ Membrane

e Studying the role of secondary
messengers in calcium release in the

cell

Schrlau M, Brailoiu, E., Patel, S., Gogotsi, Y., Dun, N., and Bau, H.
H., 2008, Carbon Nanopipettes Characterize Calcium Release
Pathways in Breast Cancer Cells, Nanotechnology 19, 325102




Biosensors
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Single Bead-Based Electrochemical Sensor
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Liu, C., Schrlau, M., Bau, H. H., 2009, Single bead-based electrochemical biosensor, to appear
in Biosensors and Bioelectronics.



Detection of H,0,
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Detection of DNA
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CNPs as Magnetic Manipulators

Superparamagnetic (SPM) CNP* Capturing & Manipulating
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*B. Polyak, Surgery, Drexel University College of Medicine, Philadelphia, USA



Electrospray Applications

Electrodripping’ Electrospinning 1#
g PEO Fiber
/ 1um OD
GluFib
1KV
T J. Santiago-Aviles, Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, USA PEO
1 D. Byun, Aerospace & Information Engineering, Konkuk University, Seoul, Korea 5KV

*C-X Yuan, Proteomics Core Facility, University of Pennsylvania, Philadelphia, USA



POTENTIAL APPLICATIONS OF CNPs

Application Description
Nanoelectrodes Electrochemistry

Nozzles (injectors) Nanofabrication

Printing D

: : Aerospace &
Protein / Oligo Information
Arrays Engineering,
Electro-spinning Konkuk

University, Seoul,

Mass spectroscopy Korea

Cellular Probes Cell sensing &
modifications




Application

Particle
manipulators

Sample holders

* Hitchcock, A.P.,

Description

Bead arrays
Bio-sensors

X ray spectroscopy

TEM of viruses &
bacteria

Johansson, G.A.,

Mitchell, G.E., Keefe, M.H.,
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and Tyliszcak, T., 2007, 3-d chemical imaging using
angle-scan tomography in a soft X-ray scanning transmission X-ray microscope, 15th Vacuum Ultraviolet Radiation
Physics Conference, Berlin, August 1, 2007. Accepted for publication in Appl. Phys. A.




Injection Sensing, Calcium messengers;
Cell function Transcription alternations

modification

Sensor Functionalized
surface —
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Actuator Magnetic
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Cell- Cell potential
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